The Study of Nonlinear Dynamical Systems Nuclear Fission Using Hurwitz Criterion
نویسنده
چکیده مقاله:
In this paper, the nonlinear dynamic system of equations, a type of nuclear ssion reactor is solved analytically and numerically. Considering that the direct solution of three-dimensional dynamical systems analysis and more in order to determine the stability and instability, in terms of algebraicsystems is dicult. Using certain situations in mathematics called Hurwitz criterion, Necessary and sucient conditions for a stable dynamical system is determined and the parameters that most in uence the quality of the dynamic behavior of a nuclear ssion reactor have been determined.
منابع مشابه
Determination of Stability Domains for Nonlinear Dynamical Systems Using the Weighted Residuals Method
Finding a suitable estimation of stability domain around stable equilibrium points is an important issue in the study of nonlinear dynamical systems. This paper intends to apply a set of analytical-numerical methods to estimate the region of attraction for autonomous nonlinear systems. In mechanical and structural engineering, autonomous systems could be found in large deformation problems or c...
متن کاملControl of nonlinear chained systems: from the Routh-Hurwitz stability criterion to time-varying exponential stabilizers
141 To generate identification data, we simulated this system using the feedback law u(t) = r(t) 0 (00:95q 02)y(t) = r(t) + 0:95y(t 0 2) (43) which places the closed-loop poles in 0.8618 and 0.6382. In the simulation we used independent, zero-mean, Gaussian white noise reference and noise signals fr(t)g and fe(t)g with variances 1 and 0.01, respectively. N = 200 data samples were used. In Table...
متن کاملDetermination of Gain and Phase Margins in Lur’e Nonlinear Systems using Extended Circle Criterion
Nonlinearity is one of the main behaviors of systems in the real world. Therefore, it seems necessary to introduce a method to determine the stability margin of these systems. Although the gain and phase margins are established criteria for the analysis of linear systems, finding a specific way to determine the true value of these margins in nonlinear systems in general is an ongoing research i...
متن کاملthe study of bright and surface discrete cavity solitons dynamics in saturable nonlinear media
امروزه سالیتون ها بعنوان امواج جایگزیده ای که تحت شرایط خاص بدون تغییر شکل در محیط منتشر می-شوند، زمینه مطالعات گسترده ای در حوزه اپتیک غیرخطی هستند. در این راستا توجه به پدیده پراش گسسته، که بعنوان عامل پهن شدگی باریکه نوری در آرایه ای از موجبرهای جفت شده، ظاهر می گردد، ضروری است، زیرا سالیتون های گسسته از خنثی شدن پراش گسسته در این سیستم ها بوسیله عوامل غیرخطی بوجود می آیند. گسستگی سیستم عامل...
observational dynamical systems
چکیده در این پایاننامه ابتدا فضاهای متریک فازی را به صورت مشاهدهگرایانه بررسی میکنیم. فضاهای متریک فازی و توپولوژی تولید شده توسط این متریک معرفی شدهاند. سپس بر اساس فضاهایی که در فصل اول معرفی شدهاند آشوب توپولوژیکی، مینیمالیتی و مجموعههای متقاطع در شیوههای مختلف بررسی شده- اند. در فصل سوم مفهوم مجموعههای جاذب فازی به عنوان یک مفهوم پایهای در سیستمهای نیم-دینامیکی نسبی، تعریف شده است. ...
15 صفحه اولControl of Nonlinear Chained Systems. from the Routh-hurwitz Stability Criterion to Time-varying Exponential Stabilizers Control of Nonlinear Chained Systems. from the Routh-hurwitz Stability Criterion to Time-varying Exponential Stabilizers
We show how any linear feedback law which asymptotically stabilizes the origin of a linear integrator system of order (n?1) induces a simple continuous time-varying feedback law which exponentially stabilizes the origin of a nonlinear (2; n) single-chain system. The proposed control design method is related to, and extends in the speciic case of chained systems, a recent method developed by M'C...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 1 شماره 2
صفحات 53- 58
تاریخ انتشار 2016-11-15
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023